THE BEST BUYERS ARE MINERS: IN TEXAS, THE DATA BEHIND BITCOIN-LED DECARBONIZATION
Comments from Senator Ted Cruz underscore the potential that Bitcoin mining has to integrate with the Texas energy grid in a transformative way.
Recently, Ars Technica published an article from staff writer and environmental science PhD Tim de Chant, aiming to rebut Texas Senator Ted Cruz’s comments from the Texas Blockchain Summit earlier this month.
De Chant took issue with the following statement from Cruz:
“Because of the ability of bitcoin mining to turn on or off instantaneously, if you have a moment where you have a power shortage or a power crisis, whether it’s a freeze or some other natural disaster where power generation capacity goes down, that creates the capacity to instantaneously shift that energy to put it back on the grid.”
De Chant offered a number of responses, but generally seems to misunderstand the substance of Senator Cruz’s point. Additionally, he made a significant mathematical error (later retracted) that called into question his literacy on Bitcoin mining.
But first, it’s worth quoting Cruz in full, as the intent of his claims are lost without the full context. We have included a transcript excerpt of Cruz’s comments on mining from his conversation at the summit with Jimmy Song below, in which he referenced a recent winter storm that left many in Texas without access to power for days:
”There were lots of things that went wrong [during the winter storm] that I think are worthy of study, but I do think that Bitcoin has the potential to address a lot of aspects of that. Number one, from the perspective of Bitcoin, Texas has abundant energy. You look at wind, we’re the number one wind producer in the country, by far. Number two, I think there are massive opportunities when it comes [indistinct audio]. If you look at natural gas right now, in West Texas the amount of natural gas that is being flared — 50% of the natural gas in this country that is flared, is being flared in the Permian right now in West Texas. I think that is an enormous opportunity for Bitcoin, because that’s right now energy that is just being wasted. It’s being wasted because there is no transmission equipment to get that natural gas where it could be used the way natural gas would ordinarily be employed; it’s just being burned.
“And so some of the really exciting endeavors that people are looking at is ‘can we capture that gas instead of burning it?.’ Use it to put in a generator right there on site. Use that power to mine Bitcoin. Part of the beauty of that is, the instant you’re doing it, you’re helping the environment enormously because rather than flaring that natural gas you’re putting it to productive use. But secondly, because of the ability to Bitcoin mining to turn on or off instantaneously, if you have a moment where you have a power shortage or a power crisis whether it’s a freeze or some other natural disaster where power generation capacity goes down, that creates the capacity to instantaneously shift that energy to put it back on the grid. If you’re connected to the grid, they become excess reserves that can strengthen the grid’s resilience by providing a significant capacity of additional power to be available for critical services if and when it is needed. So I think that has enormous potential and it’s something that in five years I expect to see a dramatically different terrain, with Bitcoin mining playing a significant role as strengthening and hardening the resilience of the grid.
“It’s a weird point. A lot of the discussion around Bitcoin views Bitcoin as a consumer of energy. A lot of the criticism directed at it is the consumption of energy. The perspective I’m suggesting is very much the reverse, which is as a way to strengthen our energy infrastructure. And it also has – one of the exciting things about crypto also, is the ability to unlock stranded renewables. So there are a lot of places on earth where the sun shines a lot and the wind blows a lot but there aren’t any power lines. And so it’s not economically feasible to use that energy. And the beauty of Bitcoin mining is that if you can connect to the internet, you can use that energy and derive value from those renewables in a way that would be impossible otherwise. And I think we’re going to see in the next five years massive innovations in that regard as well.”
De Chant made a number of points in reaction to Cruz’s statements. We will tackle them in turn.
De Chant starts with the admission that “it stands to reason that bitcoin mining could create enough demand that investors would be enticed to build new power plants. Those plants could theoretically be tasked with providing power to the grid in cases of emergency.”
But this isn’t really the point that Cruz and the Bitcoin community are making. Instead, we are pointing out that power providers will have improved economics from the existence of bitcoin mining as an additional source of offtake. These improved economics could induce extra construction. But we haven’t come across the suggestion that mining would finance the construction of bitcoin-only plants that would be directed to the grid in emergency situations.
The other claim is that bitcoin miners represent a unique type of interruptible load, whose ability to dial back energy consumption can help safeguard the grid from instability.
De Chant continued by pointing out that the February blackout in Texas was caused by significant winter storms in conjunction with a poorly weatherized grid — although Cruz completely acknowledged this in his remarks. This doesn’t score a point against Cruz — he’s fully aware of why the grid failed: significant winter storms in conjunction with a poorly weatherized grid, alongside other contributing factors such as natural gas delivery. What happened was that, alongside power plant failures, the natural gas infrastructure was unable to deliver natural gas to power plants. Additionally, the Electric Reliability Council of Texas (ERCOT) under forecasted its high case peak load scenario by around 10 gigawatts (GWs), which was a huge miss.
Cruz was not claiming that Bitcoin would prevent a black swan weather-driven grid meltdown. Ultimately, only better planning can do this.
De Chant continued by pointing out that Bitcoin miners wouldn’t spend extra cash to winterize their operations. But this is a confusing point: De Chant appears to be conflating miners and energy producers. In practice, the two are distinct. General grid failures have nothing to do with Bitcoin, and no one is suggesting that Bitcoin will cause power plants to fully avoid two-sigma tail events.
THE ECONOMICS OF ACCEPTING LOWER UPTIME
The main line of argument from De Chant is simply his claim that the economics of mining don’t support curtailment, even when prices are high. In his words: “Bitcoin miners would be unlikely to offer their generating capacity to the grid unless they were sufficiently compensated.” In the first version of his article, he originally claimed that miners would need to be paid $31,700 per megawatt hour (MWh) during the February 2021 winter storm to turn off their machines, an estimate which he revised to $600 per MWh later on. But both estimates are erroneous.
Even for the highest-end equipment (Ant miner S19s), the “turn-off point” in February 2021 for miners would have been $480 per MWh. Older equipment has a lower turn-off threshold as it is more sensitive to electricity prices. When electricity prices reach a certain threshold, miners are no longer breaking even and turn off their machines — whether or not they are enrolled in a formal grid program to compensate them for downtime.
Miners are acutely aware of their economics and can adjust to grid conditions in real time. De Chant was off by a factor of 66 in his initial estimate. In his revised estimate, he maintained erroneously that miners would turn off their rigs at $600 per MWh, which is still an overestimate. Put simply, Bitcoin miners are highly price sensitive and engage in “economic dispatch” — meaning that they react to prices and simply do not run their equipment if electricity prices get too high. This is independent of whether they are participating in a “demand response” program, which formally employs power consumers to curtail their usage during periods of electricity scarcity.
In the below chart, you can see that miners would have turned off their machines well before the $9,000 per MWh price cap was reached for electricity in ERCOT.
The precise threshold at which miners curtailed their usage depends on the types of machines employed — higher-end machines have a higher opportunity cost, and are hence kept online through more expensive periods of power pricing.
Electricity is generally cheap in ERCOT, which might imply relatively few instances in which miners would curtail their usage. But of course, the average doesn’t tell the story. The nature of the spot-driven grid is that much of the time, energy is cheap or even free (depending on where it's being consumed), and a small fraction of the time it’s very scarce and expensive (this is a feature — the high prices are a signal to incentivize new generation to be built).
It’s during those right-tail events that Bitcoin miners can significantly benefit the grid by interrupting their load. Running the rest of the time means that energy is generally more abundant, because the presence of miners is an economic pressure that improves grid economics, making it more worthwhile to build new energy projects (who can now for the first time have the option to sell their full generation capacity to the grid or to Bitcoin).
For example, Lancium is a Houston-based technology company that is creating software and intellectual property solutions that enable more renewable energy on the grid. In 2020, it was the first company ever to qualify a load as a controllable load resource (CLR) (more on these later).
As of today, the company owns and/or operates all load-only CLRs in ERCOT with approximately 100 MWs of Bitcoin mining load under control for CLR. These mining facilities are being optimized on both a daily and hourly basis to mine when it is economic to do so and to turn down when it is not.
It’s worth diving into the distribution of power prices on a grid like ERCOT to fully understand how miners engage with the grid. Much of the time, energy is abundant and cheap. In West Texas, prices are routinely negative, as the supply of wind and solar periodically vastly outstrips demand, and there’s a limited ability to export the supply to load centers elsewhere in Texas.
What the miners do is provide a load resource which eagerly gobbles up negatively priced or cheap power (everything on the left side of the chart), while interrupting itself during those right-tail events (you can see the winter storm to the right).
On the one hand, this improves the economics of energy producers who for the first time have a new buyer to sell their electricity to, beyond just the inflexible grid. This promotes the construction of more renewable energy infrastructure and improves the prospects for existing installations. On the other hand, a highly interruptible load that can tolerate downtime means there’s more power available for households and hospitals during periods of scarcity, when supply trips offline through weather or other interruptions.
From the miner’s perspective, accepting interruptions to their service is actually an economically rational decision, for two reasons:
They avoid paying extremely high prices for electricity during a shortage
In some cases, they are actually paid for the service of providing “insurance” to the grid
The below table shows the average yearly electricity price for consumers willing to tolerate various amounts of downtime. You can see that if you strategically avoided high-priced periods (as miners are motivated to do), you dramatically saved on power overall.
In 2021, with the right-tail event due to the winter storm causing prices to spike, if you reduced your uptime expectation from 100% to 95%, you were able to drive your overall power cost for the year from $178 per MWh to a mere $25 per MWh. So, the grid does not need to rely on the beneficence of miners to expect them to turn off their machines during times of grid stress: as profit-maximizing entities, they have a clear economic motive to do so.
DEMAND RESPONSE AND CONTROLLABLE LOAD
Additionally, the existence of flexible load is so useful to grid operators that they have designed specific programs to pay these load centers for a type of grid insurance. Broadly, these programs are known as “demand response” (DR). This term covers a range of load responses that generally reduce load at the instruction of the grid operator. Virtually all independent system operators maintain demand response programs, but most of them have programs that require 10 to 30 minutes of response time on the load.
In fact, on a percentage of peak demand basis, ERCOT lags its peers like MISO (the Midcontinent Independent System Operator) when it comes to enrolling utilities in demand response.
As ERCOT is a single balancing authority interconnection that is not synchronously connected with any other interconnection, it is essentially an islanded electrical grid. This means that ERCOT cannot lean on its neighbors for help when faced with an expected energy shortfall and instead must balance on its own.
Labels: bitcoin, Crypto, E-commerce, Marketing

<< Home